python-cookbook
  • Introduction
  • 第 1 章 数据结构和算法
    • 1.1 解压序列赋值给多个变量
    • 1.2 解压可迭代对象赋值给多个变量
    • 1.3 保留最后N个元素
    • 1.4 查找最大或最小的N个元素
    • 1.5 实现一个优先级队列
    • 1.6 字典中的键映射多个值
    • 1.7 字典排序
    • 1.8 字典的运算
    • 1.9 查找两字典的相同点
    • 1.10 删除序列相同元素并保持顺序
    • 1.11 命名切片
    • 1.12 序列中出现次数最多的元素
    • 1.13 通过某个关键字排序一个字典列表
    • 1.14 排序不支持原生比较的对象
    • 1.15 通过某个字段将记录分组
    • 1.16 过滤序列元素
    • 1.17 从字典中提取子集
    • 1.18 映射名称到序列元素
    • 1.19 转换并同时计算数据
    • 1.20 合并多个字典或映射
  • 第 2 章 字符串和文本
    • 2.1 使用多个界定符分割字符串
    • 2.2 字符串开头或结尾匹配
    • 2.3 用Shell通配符匹配字符串
    • 2.4 字符串匹配和搜索
    • 2.5 字符串搜索和替换
    • 2.6 字符串忽略大小写的搜索替换
    • 2.7 最短匹配模式
    • 2.8 多行匹配模式
    • 2.9 将Unicode文本标准化
    • 2.10 在正则式中使用Unicode
    • 2.11 删除字符串中不需要的字符
    • 2.12 审查清理文本字符串
    • 2.13 字符串对齐
    • 2.14 合并拼接字符串
    • 2.15 字符串中插入变量
    • 2.16 以指定列宽格式化字符串
    • 2.17 在字符串中处理html和xml
    • 2.18 字符串令牌解析
    • 2.19 实现一个简单的递归下降分析器
    • 2.20 字节字符串上的字符串操作
  • 第 3 章 数字日期和时间
    • 3.1 数字的四舍五入
    • 3.2 执行精确的浮点数运算
    • 3.3 数字的格式化输出
    • 3.4 二八十六进制整数
    • 3.5 字节到大整数的打包与解包
    • 3.6 复数的数学运算
    • 3.7 无穷大与NaN
    • 3.8 分数运算
    • 3.9 大型数组运算
    • 3.10 矩阵与线性代数运算
    • 3.11 随机选择
    • 3.12 基本的日期与时间转换
    • 3.13 计算最后一个周五的日期
    • 3.14 计算当前月份的日期范围
    • 3.15 字符串转换为日期
    • 3.16 结合时区的日期操作
  • 第 4 章 迭代器与生成器
    • 4.1 手动遍历迭代器
    • 4.2 代理迭代
    • 4.3 使用生成器创建新的迭代模式
    • 4.4 实现迭代器协议
    • 4.5 反向迭代
    • 4.6 带有外部状态的生成器函数
    • 4.7 迭代器切片
    • 4.8 跳过可迭代对象的开始部分
    • 4.9 排列组合的迭代
    • 4.10 序列上索引值迭代
    • 4.11 同时迭代多个序列
    • 4.12 不同集合上元素的迭代
    • 4.13 创建数据处理管道
    • 4.14 展开嵌套的序列
    • 4.15 顺序迭代合并后的排序迭代对象
    • 4.16 迭代器代替while无限循环
  • 第 5 章 文件与 IO
    • 5.1 读写文本数据
    • 5.2 打印输出至文件中
    • 5.3 使用其他分隔符或行终止符打印
    • 5.4 读写字节数据
    • 5.5 文件不存在才能写入
    • 5.6 字符串的I-O操作
    • 5.7 读写压缩文件
    • 5.8 固定大小记录的文件迭代
    • 5.9 读取二进制数据到可变缓冲区中
    • 5.10 内存映射的二进制文件
    • 5.11 文件路径名的操作
    • 5.12 测试文件是否存在
    • 5.13 获取文件夹中的文件列表
    • 5.14 忽略文件名编码
    • 5.15 打印不合法的文件名
    • 5.16 增加或改变已打开文件的编码
    • 5.17 将字节写入文本文件
    • 5.18 将文件描述符包装成文件对象
    • 5.19 创建临时文件和文件夹
    • 5.20 与串行端口的数据通信
    • 5.21 序列化Python对象
  • 第 6 章 数据编码和处理
    • 6.1 读写CSV数据
    • 6.2 读写JSON数据
    • 6.3 解析简单的XML数据
    • 6.4 增量式解析大型XML文件
    • 6.5 将字典转换为XML
    • 6.6 解析和修改XML
    • 6.7 利用命名空间解析XML文档
    • 6.8 与关系型数据库的交互
    • 6.9 编码和解码十六进制数
    • 6.10 编码解码Base64数据
    • 6.11 读写二进制数组数据
    • 6.12 读取嵌套和可变长二进制数据
    • 6.13 数据的累加与统计操作
  • 第 7 章 函数
    • 7.1 可接受任意数量参数的函数
    • 7.2 只接受关键字参数的函数
    • 7.3 给函数参数增加元信息
    • 7.4 返回多个值的函数
    • 7.5 定义有默认参数的函数
    • 7.6 定义匿名或内联函数
    • 7.7 匿名函数捕获变量值
    • 7.8 减少可调用对象的参数个数
    • 7.9 将单方法的类转换为函数
    • 7.10 带额外状态信息的回调函数
    • 7.11 内联回调函数
    • 7.12 访问闭包中定义的变量
  • 第 8 章 类与对象
    • 8.1 改变对象的字符串显示
    • 8.2 自定义字符串的格式化
    • 8.3 让对象支持上下文管理协议
    • 8.4 创建大量对象时节省内存方法
    • 8.5 在类中封装属性名
    • 8.6 创建可管理的属性
    • 8.7 调用父类方法
    • 8.8 子类中扩展property
    • 8.9 创建新的类或实例属性
    • 8.10 使用延迟计算属性
    • 8.11 简化数据结构的初始化
    • 8.12 定义接口或者抽象基类
    • 8.13 实现数据模型的类型约束
    • 8.14 实现自定义容器
    • 8.15 属性的代理访问
    • 8.16 在类中定义多个构造器
    • 8.17 创建不调用init方法的实例
    • 8.18 利用Mixins扩展类功能
    • 8.19 实现状态对象或者状态机
    • 8.20 通过字符串调用对象方法
    • 8.21 实现访问者模式
    • 8.22 不用递归实现访问者模式
    • 8.23 循环引用数据结构的内存管理
    • 8.24 让类支持比较操作
    • 8.25 创建缓存实例
  • 第 9 章 元编程
    • 9.1 在函数上添加包装器
    • 9.2 创建装饰器时保留函数元信息
    • 9.3 解除一个装饰器
    • 9.4 定义一个带参数的装饰器
    • 9.5 可自定义属性的装饰器
    • 9.6 带可选参数的装饰器
    • 9.7 利用装饰器强制函数上的类型检查
    • 9.8 将装饰器定义为类的一部分
    • 9.9 将装饰器定义为类
    • 9.10 为类和静态方法提供装饰器
    • 9.11 装饰器为被包装函数增加参数
    • 9.12 使用装饰器扩充类的功能
    • 9.13 使用元类控制实例的创建
    • 9.14 捕获类的属性定义顺序
    • 9.15 定义有可选参数的元类
    • 9.16 args和*kwargs的强制参数签名
    • 9.17 在类上强制使用编程规约
    • 9.18 以编程方式定义类
    • 9.19 在定义的时候初始化类的成员
    • 9.20 利用函数注解实现方法重载
    • 9.21 避免重复的属性方法
    • 9.22 定义上下文管理器的简单方法
    • 9.23 在局部变量域中执行代码
    • 9.24 解析与分析Python源码
    • 9.25 拆解Python字节码
  • 第 10 章 模块与包
    • 10.1 构建一个模块的层级包
    • 10.2 控制模块被全部导入的内容
    • 10.3 使用相对路径名导入包中子模块
    • 10.4 将模块分割成多个文件
    • 10.5 利用命名空间导入目录分散的代码
    • 10.6 重新加载模块
    • 10.7 运行目录或压缩文件
    • 10.8 读取位于包中的数据文件
    • 10.9 将文件夹加入到sys.path
    • 10.10 通过字符串名导入模块
    • 10.11 通过钩子远程加载模块
    • 10.12 导入模块的同时修改模块
    • 10.13 安装私有的包
    • 10.14 创建新的Python环境
    • 10.15 分发包
  • 第 11 章 网络与 Web 编程
    • 11.1 作为客户端与HTTP服务交互
    • 11.2 创建TCP服务器
    • 11.3 创建UDP服务器
    • 11.4 通过CIDR地址生成对应的IP地址集
    • 11.5 创建一个简单的REST接口
    • 11.6 通过XML-RPC实现简单的远程调用
    • 11.7 在不同的Python解释器之间交互
    • 11.8 实现远程方法调用
    • 11.9 简单的客户端认证
    • 11.10 在网络服务中加入SSL
    • 11.11 进程间传递Socket文件描述符
    • 11.12 理解事件驱动的IO
    • 11.13 发送与接收大型数组
  • 第 12 章 并发编程
    • 12.1 启动与停止线程
    • 12.2 判断线程是否已经启动
    • 12.3 线程间通信
    • 12.4 给关键部分加锁
    • 12.5 防止死锁的加锁机制
    • 12.6 保存线程的状态信息
    • 12.7 创建一个线程池
    • 12.8 简单的并行编程
    • 12.9 Python的全局锁问题
    • 12.10 定义一个Actor任务
    • 12.11 实现消息发布-订阅模型
    • 12.12 使用生成器代替线程
    • 12.13 多个线程队列轮询
    • 12.14 在Unix系统上面启动守护进程
  • 第 13 章 脚本编程与系统管理
    • 13.1 通过重定向-管道-文件接受输入
    • 13.2 终止程序并给出错误信息
    • 13.3 解析命令行选项
    • 13.4 运行时弹出密码输入提示
    • 13.5 获取终端的大小
    • 13.6 执行外部命令并获取它的输出
    • 13.7 复制或者移动文件和目录
    • 13.8 创建和解压归档文件
    • 13.9 通过文件名查找文件
    • 13.10 读取配置文件
    • 13.11 给简单脚本增加日志功能
    • 13.12 给函数库增加日志功能
    • 13.13 实现一个计时器
    • 13.14 限制内存和CPU的使用量
    • 13.15 启动一个WEB浏览器
  • 第 14 章 测试、调试和异常
    • 14.1 测试stdout输出
    • 14.2 在单元测试中给对象打补丁
    • 14.3 在单元测试中测试异常情况
    • 14.4 将测试输出用日志记录到文件中
    • 14.5 忽略或期望测试失败
    • 14.6 处理多个异常
    • 14.7 捕获所有异常
    • 14.8 创建自定义异常
    • 14.9 捕获异常后抛出另外的异常
    • 14.10 重新抛出被捕获的异常
    • 14.11 输出警告信息
    • 14.12 调试基本的程序崩溃错误
    • 14.13 给你的程序做性能测试
    • 14.14 加速程序运行
  • 第 15 章 C 语言扩展
    • 15.1 使用ctypes访问C代码
    • 15.2 简单的C扩展模块
    • 15.3 编写扩展函数操作数组
    • 15.4 在C扩展模块中操作隐形指针
    • 15.5 从扩张模块中定义和导出C的API
    • 15.6 从C语言中调用Python代码
    • 15.7 从C扩展中释放全局锁
    • 15.8 C和Python中的线程混用
    • 15.9 用WSIG包装C代码
    • 15.10 用Cython包装C代码
    • 15.11 用Cython写高性能的数组操作
    • 15.12 将函数指针转换为可调用对象
    • 15.13 传递NULL结尾的字符串给C函数库
    • 15.14 传递Unicode字符串给C函数库
    • 15.15 C字符串转换为Python字符串
    • 15.16 不确定编码格式的C字符串
    • 15.17 传递文件名给C扩展
    • 15.18 传递已打开的文件给C扩展
    • 15.19 从C语言中读取类文件对象
    • 15.20 处理C语言中的可迭代对象
    • 15.21 诊断分段错误
Powered by GitBook
On this page
  • 问题
  • 解决方案
  • 讨论

Was this helpful?

  1. 第 11 章 网络与 Web 编程

11.8 实现远程方法调用

问题

你想在一个消息传输层如 sockets 、multiprocessing connections 或 ZeroMQ 的基础之上实现一个简单的远程过程调用(RPC)。

解决方案

将函数请求、参数和返回值使用 pickle 编码后,在不同的解释器直接传送 pickle 字节字符串,可以很容易的实现 RPC。 下面是一个简单的 RPC 处理器,可以被整合到一个服务器中去:

# rpcserver.py

import pickle
class RPCHandler:
    def __init__(self):
        self._functions = { }

    def register_function(self, func):
        self._functions[func.__name__] = func

    def handle_connection(self, connection):
        try:
            while True:
                # Receive a message
                func_name, args, kwargs = pickle.loads(connection.recv())
                # Run the RPC and send a response
                try:
                    r = self._functions[func_name](*args,**kwargs)
                    connection.send(pickle.dumps(r))
                except Exception as e:
                    connection.send(pickle.dumps(e))
        except EOFError:
             pass

要使用这个处理器,你需要将它加入到一个消息服务器中。你有很多种选择, 但是使用 multiprocessing 库是最简单的。下面是一个 RPC 服务器例子:

from multiprocessing.connection import Listener
from threading import Thread

def rpc_server(handler, address, authkey):
    sock = Listener(address, authkey=authkey)
    while True:
        client = sock.accept()
        t = Thread(target=handler.handle_connection, args=(client,))
        t.daemon = True
        t.start()

# Some remote functions
def add(x, y):
    return x + y

def sub(x, y):
    return x - y

# Register with a handler
handler = RPCHandler()
handler.register_function(add)
handler.register_function(sub)

# Run the server
rpc_server(handler, ('localhost', 17000), authkey=b'peekaboo')

为了从一个远程客户端访问服务器,你需要创建一个对应的用来传送请求的 RPC 代理类。例如

import pickle

class RPCProxy:
    def __init__(self, connection):
        self._connection = connection
    def __getattr__(self, name):
        def do_rpc(*args, **kwargs):
            self._connection.send(pickle.dumps((name, args, kwargs)))
            result = pickle.loads(self._connection.recv())
            if isinstance(result, Exception):
                raise result
            return result
        return do_rpc

要使用这个代理类,你需要将其包装到一个服务器的连接上面,例如:

>>> from multiprocessing.connection import Client
>>> c = Client(('localhost', 17000), authkey=b'peekaboo')
>>> proxy = RPCProxy(c)
>>> proxy.add(2, 3)
5
>>> proxy.sub(2, 3)
-1
>>> proxy.sub([1, 2], 4)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "rpcserver.py", line 37, in do_rpc
    raise result
TypeError: unsupported operand type(s) for -: 'list' and 'int'

要注意的是很多消息层(比如 multiprocessing )已经使用pickle序列化了数据。 如果是这样的话,对 pickle.dumps() 和 pickle.loads() 的调用要去掉。

讨论

RPCHandler 和 RPCProxy 的基本思路是很比较简单的。 如果一个客户端想要调用一个远程函数,比如 foo(1, 2, z=3) ,代理类创建一个包含了函数名和参数的元组 ('foo', (1, 2), {'z': 3}) 。 这个元组被 pickle 序列化后通过网络连接发生出去。 这一步在 RPCProxy 的 __getattr__() 方法返回的 do_rpc() 闭包中完成。 服务器接收后通过 pickle 反序列化消息,查找函数名看看是否已经注册过,然后执行相应的函数。 执行结果(或异常)被 pickle 序列化后返回发送给客户端。我们的实例需要依赖 multiprocessing 进行通信。 不过,这种方式可以适用于其他任何消息系统。例如,如果你想在 ZeroMQ 之上实现 RPC, 仅仅只需要将连接对象换成合适的 ZeroMQ 的 socket 对象即可。

由于底层需要依赖 pickle,那么安全问题就需要考虑了 (因为一个聪明的黑客可以创建特定的消息,能够让任意函数通过 pickle 反序列化后被执行)。 因此你永远不要允许来自不信任或未认证的客户端的 RPC。特别是你绝对不要允许来自 Internet 的任意机器的访问, 这种只能在内部被使用,位于防火墙后面并且不要对外暴露。

作为 pickle 的替代,你也许可以考虑使用 JSON、XML 或一些其他的编码格式来序列化消息。 例如,本机实例可以很容易的改写成 JSON 编码方案。还需要将 pickle.loads() 和pickle.dumps() 替换成 json.loads() 和 json.dumps() 即可:

# jsonrpcserver.py
import json

class RPCHandler:
    def __init__(self):
        self._functions = { }

    def register_function(self, func):
        self._functions[func.__name__] = func

    def handle_connection(self, connection):
        try:
            while True:
                # Receive a message
                func_name, args, kwargs = json.loads(connection.recv())
                # Run the RPC and send a response
                try:
                    r = self._functions[func_name](*args,**kwargs)
                    connection.send(json.dumps(r))
                except Exception as e:
                    connection.send(json.dumps(str(e)))
        except EOFError:
             pass

# jsonrpcclient.py
import json

class RPCProxy:
    def __init__(self, connection):
        self._connection = connection
    def __getattr__(self, name):
        def do_rpc(*args, **kwargs):
            self._connection.send(json.dumps((name, args, kwargs)))
            result = json.loads(self._connection.recv())
            return result
        return do_rpc

实现 RPC 的一个比较复杂的问题是如何去处理异常。至少,当方法产生异常时服务器不应该奔溃。 因此,返回给客户端的异常所代表的含义就要好好设计了。 如果你使用 pickle,异常对象实例在客户端能被反序列化并抛出。如果你使用其他的协议,那得想想另外的方法了。 不过至少,你应该在响应中返回异常字符串。我们在 JSON 的例子中就是使用的这种方式。

对于其他的 RPC 实现例子,建议看看在 XML-RPC 中使用的 SimpleXMLRPCServer 和 ServerProxy 的实现。

Previous11.7 在不同的Python解释器之间交互Next11.9 简单的客户端认证

Last updated 5 years ago

Was this helpful?