python-cookbook
  • Introduction
  • 第 1 章 数据结构和算法
    • 1.1 解压序列赋值给多个变量
    • 1.2 解压可迭代对象赋值给多个变量
    • 1.3 保留最后N个元素
    • 1.4 查找最大或最小的N个元素
    • 1.5 实现一个优先级队列
    • 1.6 字典中的键映射多个值
    • 1.7 字典排序
    • 1.8 字典的运算
    • 1.9 查找两字典的相同点
    • 1.10 删除序列相同元素并保持顺序
    • 1.11 命名切片
    • 1.12 序列中出现次数最多的元素
    • 1.13 通过某个关键字排序一个字典列表
    • 1.14 排序不支持原生比较的对象
    • 1.15 通过某个字段将记录分组
    • 1.16 过滤序列元素
    • 1.17 从字典中提取子集
    • 1.18 映射名称到序列元素
    • 1.19 转换并同时计算数据
    • 1.20 合并多个字典或映射
  • 第 2 章 字符串和文本
    • 2.1 使用多个界定符分割字符串
    • 2.2 字符串开头或结尾匹配
    • 2.3 用Shell通配符匹配字符串
    • 2.4 字符串匹配和搜索
    • 2.5 字符串搜索和替换
    • 2.6 字符串忽略大小写的搜索替换
    • 2.7 最短匹配模式
    • 2.8 多行匹配模式
    • 2.9 将Unicode文本标准化
    • 2.10 在正则式中使用Unicode
    • 2.11 删除字符串中不需要的字符
    • 2.12 审查清理文本字符串
    • 2.13 字符串对齐
    • 2.14 合并拼接字符串
    • 2.15 字符串中插入变量
    • 2.16 以指定列宽格式化字符串
    • 2.17 在字符串中处理html和xml
    • 2.18 字符串令牌解析
    • 2.19 实现一个简单的递归下降分析器
    • 2.20 字节字符串上的字符串操作
  • 第 3 章 数字日期和时间
    • 3.1 数字的四舍五入
    • 3.2 执行精确的浮点数运算
    • 3.3 数字的格式化输出
    • 3.4 二八十六进制整数
    • 3.5 字节到大整数的打包与解包
    • 3.6 复数的数学运算
    • 3.7 无穷大与NaN
    • 3.8 分数运算
    • 3.9 大型数组运算
    • 3.10 矩阵与线性代数运算
    • 3.11 随机选择
    • 3.12 基本的日期与时间转换
    • 3.13 计算最后一个周五的日期
    • 3.14 计算当前月份的日期范围
    • 3.15 字符串转换为日期
    • 3.16 结合时区的日期操作
  • 第 4 章 迭代器与生成器
    • 4.1 手动遍历迭代器
    • 4.2 代理迭代
    • 4.3 使用生成器创建新的迭代模式
    • 4.4 实现迭代器协议
    • 4.5 反向迭代
    • 4.6 带有外部状态的生成器函数
    • 4.7 迭代器切片
    • 4.8 跳过可迭代对象的开始部分
    • 4.9 排列组合的迭代
    • 4.10 序列上索引值迭代
    • 4.11 同时迭代多个序列
    • 4.12 不同集合上元素的迭代
    • 4.13 创建数据处理管道
    • 4.14 展开嵌套的序列
    • 4.15 顺序迭代合并后的排序迭代对象
    • 4.16 迭代器代替while无限循环
  • 第 5 章 文件与 IO
    • 5.1 读写文本数据
    • 5.2 打印输出至文件中
    • 5.3 使用其他分隔符或行终止符打印
    • 5.4 读写字节数据
    • 5.5 文件不存在才能写入
    • 5.6 字符串的I-O操作
    • 5.7 读写压缩文件
    • 5.8 固定大小记录的文件迭代
    • 5.9 读取二进制数据到可变缓冲区中
    • 5.10 内存映射的二进制文件
    • 5.11 文件路径名的操作
    • 5.12 测试文件是否存在
    • 5.13 获取文件夹中的文件列表
    • 5.14 忽略文件名编码
    • 5.15 打印不合法的文件名
    • 5.16 增加或改变已打开文件的编码
    • 5.17 将字节写入文本文件
    • 5.18 将文件描述符包装成文件对象
    • 5.19 创建临时文件和文件夹
    • 5.20 与串行端口的数据通信
    • 5.21 序列化Python对象
  • 第 6 章 数据编码和处理
    • 6.1 读写CSV数据
    • 6.2 读写JSON数据
    • 6.3 解析简单的XML数据
    • 6.4 增量式解析大型XML文件
    • 6.5 将字典转换为XML
    • 6.6 解析和修改XML
    • 6.7 利用命名空间解析XML文档
    • 6.8 与关系型数据库的交互
    • 6.9 编码和解码十六进制数
    • 6.10 编码解码Base64数据
    • 6.11 读写二进制数组数据
    • 6.12 读取嵌套和可变长二进制数据
    • 6.13 数据的累加与统计操作
  • 第 7 章 函数
    • 7.1 可接受任意数量参数的函数
    • 7.2 只接受关键字参数的函数
    • 7.3 给函数参数增加元信息
    • 7.4 返回多个值的函数
    • 7.5 定义有默认参数的函数
    • 7.6 定义匿名或内联函数
    • 7.7 匿名函数捕获变量值
    • 7.8 减少可调用对象的参数个数
    • 7.9 将单方法的类转换为函数
    • 7.10 带额外状态信息的回调函数
    • 7.11 内联回调函数
    • 7.12 访问闭包中定义的变量
  • 第 8 章 类与对象
    • 8.1 改变对象的字符串显示
    • 8.2 自定义字符串的格式化
    • 8.3 让对象支持上下文管理协议
    • 8.4 创建大量对象时节省内存方法
    • 8.5 在类中封装属性名
    • 8.6 创建可管理的属性
    • 8.7 调用父类方法
    • 8.8 子类中扩展property
    • 8.9 创建新的类或实例属性
    • 8.10 使用延迟计算属性
    • 8.11 简化数据结构的初始化
    • 8.12 定义接口或者抽象基类
    • 8.13 实现数据模型的类型约束
    • 8.14 实现自定义容器
    • 8.15 属性的代理访问
    • 8.16 在类中定义多个构造器
    • 8.17 创建不调用init方法的实例
    • 8.18 利用Mixins扩展类功能
    • 8.19 实现状态对象或者状态机
    • 8.20 通过字符串调用对象方法
    • 8.21 实现访问者模式
    • 8.22 不用递归实现访问者模式
    • 8.23 循环引用数据结构的内存管理
    • 8.24 让类支持比较操作
    • 8.25 创建缓存实例
  • 第 9 章 元编程
    • 9.1 在函数上添加包装器
    • 9.2 创建装饰器时保留函数元信息
    • 9.3 解除一个装饰器
    • 9.4 定义一个带参数的装饰器
    • 9.5 可自定义属性的装饰器
    • 9.6 带可选参数的装饰器
    • 9.7 利用装饰器强制函数上的类型检查
    • 9.8 将装饰器定义为类的一部分
    • 9.9 将装饰器定义为类
    • 9.10 为类和静态方法提供装饰器
    • 9.11 装饰器为被包装函数增加参数
    • 9.12 使用装饰器扩充类的功能
    • 9.13 使用元类控制实例的创建
    • 9.14 捕获类的属性定义顺序
    • 9.15 定义有可选参数的元类
    • 9.16 args和*kwargs的强制参数签名
    • 9.17 在类上强制使用编程规约
    • 9.18 以编程方式定义类
    • 9.19 在定义的时候初始化类的成员
    • 9.20 利用函数注解实现方法重载
    • 9.21 避免重复的属性方法
    • 9.22 定义上下文管理器的简单方法
    • 9.23 在局部变量域中执行代码
    • 9.24 解析与分析Python源码
    • 9.25 拆解Python字节码
  • 第 10 章 模块与包
    • 10.1 构建一个模块的层级包
    • 10.2 控制模块被全部导入的内容
    • 10.3 使用相对路径名导入包中子模块
    • 10.4 将模块分割成多个文件
    • 10.5 利用命名空间导入目录分散的代码
    • 10.6 重新加载模块
    • 10.7 运行目录或压缩文件
    • 10.8 读取位于包中的数据文件
    • 10.9 将文件夹加入到sys.path
    • 10.10 通过字符串名导入模块
    • 10.11 通过钩子远程加载模块
    • 10.12 导入模块的同时修改模块
    • 10.13 安装私有的包
    • 10.14 创建新的Python环境
    • 10.15 分发包
  • 第 11 章 网络与 Web 编程
    • 11.1 作为客户端与HTTP服务交互
    • 11.2 创建TCP服务器
    • 11.3 创建UDP服务器
    • 11.4 通过CIDR地址生成对应的IP地址集
    • 11.5 创建一个简单的REST接口
    • 11.6 通过XML-RPC实现简单的远程调用
    • 11.7 在不同的Python解释器之间交互
    • 11.8 实现远程方法调用
    • 11.9 简单的客户端认证
    • 11.10 在网络服务中加入SSL
    • 11.11 进程间传递Socket文件描述符
    • 11.12 理解事件驱动的IO
    • 11.13 发送与接收大型数组
  • 第 12 章 并发编程
    • 12.1 启动与停止线程
    • 12.2 判断线程是否已经启动
    • 12.3 线程间通信
    • 12.4 给关键部分加锁
    • 12.5 防止死锁的加锁机制
    • 12.6 保存线程的状态信息
    • 12.7 创建一个线程池
    • 12.8 简单的并行编程
    • 12.9 Python的全局锁问题
    • 12.10 定义一个Actor任务
    • 12.11 实现消息发布-订阅模型
    • 12.12 使用生成器代替线程
    • 12.13 多个线程队列轮询
    • 12.14 在Unix系统上面启动守护进程
  • 第 13 章 脚本编程与系统管理
    • 13.1 通过重定向-管道-文件接受输入
    • 13.2 终止程序并给出错误信息
    • 13.3 解析命令行选项
    • 13.4 运行时弹出密码输入提示
    • 13.5 获取终端的大小
    • 13.6 执行外部命令并获取它的输出
    • 13.7 复制或者移动文件和目录
    • 13.8 创建和解压归档文件
    • 13.9 通过文件名查找文件
    • 13.10 读取配置文件
    • 13.11 给简单脚本增加日志功能
    • 13.12 给函数库增加日志功能
    • 13.13 实现一个计时器
    • 13.14 限制内存和CPU的使用量
    • 13.15 启动一个WEB浏览器
  • 第 14 章 测试、调试和异常
    • 14.1 测试stdout输出
    • 14.2 在单元测试中给对象打补丁
    • 14.3 在单元测试中测试异常情况
    • 14.4 将测试输出用日志记录到文件中
    • 14.5 忽略或期望测试失败
    • 14.6 处理多个异常
    • 14.7 捕获所有异常
    • 14.8 创建自定义异常
    • 14.9 捕获异常后抛出另外的异常
    • 14.10 重新抛出被捕获的异常
    • 14.11 输出警告信息
    • 14.12 调试基本的程序崩溃错误
    • 14.13 给你的程序做性能测试
    • 14.14 加速程序运行
  • 第 15 章 C 语言扩展
    • 15.1 使用ctypes访问C代码
    • 15.2 简单的C扩展模块
    • 15.3 编写扩展函数操作数组
    • 15.4 在C扩展模块中操作隐形指针
    • 15.5 从扩张模块中定义和导出C的API
    • 15.6 从C语言中调用Python代码
    • 15.7 从C扩展中释放全局锁
    • 15.8 C和Python中的线程混用
    • 15.9 用WSIG包装C代码
    • 15.10 用Cython包装C代码
    • 15.11 用Cython写高性能的数组操作
    • 15.12 将函数指针转换为可调用对象
    • 15.13 传递NULL结尾的字符串给C函数库
    • 15.14 传递Unicode字符串给C函数库
    • 15.15 C字符串转换为Python字符串
    • 15.16 不确定编码格式的C字符串
    • 15.17 传递文件名给C扩展
    • 15.18 传递已打开的文件给C扩展
    • 15.19 从C语言中读取类文件对象
    • 15.20 处理C语言中的可迭代对象
    • 15.21 诊断分段错误
Powered by GitBook
On this page
  • 问题
  • 解决方案
  • 讨论

Was this helpful?

  1. 第 15 章 C 语言扩展

15.9 用WSIG包装C代码

Previous15.8 C和Python中的线程混用Next15.10 用Cython包装C代码

Last updated 5 years ago

Was this helpful?

问题

你想让你写的 C 代码作为一个 C 扩展模块来访问,想通过使用 来完成。

解决方案

Swig 通过解析 C 头文件并自动创建扩展代码来操作。 要使用它,你先要有一个 C 头文件。例如,我们示例的头文件如下:

/* sample.h */

#include <math.h>
extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
    double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

一旦你有了这个头文件,下一步就是编写一个 Swig ”接口”文件。 按照约定,这些文件以 ”.i” 后缀并且类似下面这样:

// sample.i - Swig interface
%module sample
%{
#include "sample.h"
%}

/* Customizations */
%extend Point {
    /* Constructor for Point objects */
    Point(double x, double y) {
        Point *p = (Point *) malloc(sizeof(Point));
        p->x = x;
        p->y = y;
        return p;
   };
};

/* Map int *remainder as an output argument */
%include typemaps.i
%apply int *OUTPUT { int * remainder };

/* Map the argument pattern (double *a, int n) to arrays */
%typemap(in) (double *a, int n)(Py_buffer view) {
  view.obj = NULL;
  if (PyObject_GetBuffer($input, &view, PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) == -1) {
    SWIG_fail;
  }
  if (strcmp(view.format,"d") != 0) {
    PyErr_SetString(PyExc_TypeError, "Expected an array of doubles");
    SWIG_fail;
  }
  $1 = (double *) view.buf;
  $2 = view.len / sizeof(double);
}

%typemap(freearg) (double *a, int n) {
  if (view$argnum.obj) {
    PyBuffer_Release(&view$argnum);
  }
}

/* C declarations to be included in the extension module */

extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
    double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

一旦你写好了接口文件,就可以在命令行工具中调用 Swig 了:

bash % swig -python -py3 sample.i

swig 的输出就是两个文件,sample_wrap.c 和 sample.py。 后面的文件就是用户需要导入的。 而 sample_wrap.c 文件是需要被编译到名叫 _sample 的支持模块的 C 代码。 这个可以通过跟普通扩展模块一样的技术来完成。 例如,你创建了一个如下所示的 setup.py 文件:

# setup.py
from distutils.core import setup, Extension

setup(name='sample',
      py_modules=['sample.py'],
      ext_modules=[
        Extension('_sample',
                  ['sample_wrap.c'],
                  include_dirs = [],
                  define_macros = [],

                  undef_macros = [],
                  library_dirs = [],
                  libraries = ['sample']
                  )
        ]
)

要编译和测试,在 setup.py 上执行 python3,如下:

bash % python3 setup.py build_ext --inplace
running build_ext
building '_sample' extension
gcc -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes
-I/usr/local/include/python3.3m -c sample_wrap.c
 -o build/temp.macosx-10.6-x86_64-3.3/sample_wrap.o
sample_wrap.c: In function ‘SWIG_InitializeModule’:
sample_wrap.c:3589: warning: statement with no effect
gcc -bundle -undefined dynamic_lookup build/temp.macosx-10.6-x86_64-3.3/sample.o
 build/temp.macosx-10.6-x86_64-3.3/sample_wrap.o -o _sample.so -lsample

如果一切正常的话,你会发现你就可以很方便的使用生成的 C 扩展模块了。例如:

>>> import sample
>>> sample.gcd(42,8)
2
>>> sample.divide(42,8)
[5, 2]
>>> p1 = sample.Point(2,3)
>>> p2 = sample.Point(4,5)
>>> sample.distance(p1,p2)
2.8284271247461903
>>> p1.x
2.0
>>> p1.y
3.0
>>> import array
>>> a = array.array('d',[1,2,3])
>>> sample.avg(a)
2.0

讨论

Swig 是 Python 历史中构建扩展模块的最古老的工具之一。 Swig 能自动化很多包装生成器的处理。

所有 Swig 接口都以类似下面这样的为开头:

%module sample
%{
#include "sample.h"
%}

这个仅仅只是声明了扩展模块的名称并指定了 C 头文件, 为了能让编译通过必须要包含这些头文件(位于 %{ 和 %} 的代码), 将它们之间复制粘贴到输出代码中,这也是你要放置所有包含文件和其他编译需要的定义的地方。

Swig 接口的底下部分是一个 C 声明列表,你需要在扩展中包含它。 这通常从头文件中被复制。在我们的例子中,我们仅仅像下面这样直接粘贴在头文件中:

%module sample
%{
#include "sample.h"
%}
...
extern int gcd(int, int);
extern int in_mandel(double x0, double y0, int n);
extern int divide(int a, int b, int *remainder);
extern double avg(double *a, int n);

typedef struct Point {
    double x,y;
} Point;

extern double distance(Point *p1, Point *p2);

有一点需要强调的是这些声明会告诉 Swig 你想要在 Python 模块中包含哪些东西。 通常你需要编辑这个声明列表或相应的修改下它。 例如,如果你不想某些声明被包含进来,你要将它从声明列表中移除掉。

使用 Swig 最复杂的地方是它能给 C 代码提供大量的自定义操作。

第一个自定义是 %extend 指令允许方法被附加到已存在的结构体和类定义上。 在例子中,这个被用来添加一个 Point 结构体的构造器方法。 它可以让你像下面这样使用这个结构体:

>>> p1 = sample.Point(2,3)

如果略过的话,Point 对象就必须以更加复杂的方式来被创建:

>>> # Usage if %extend Point is omitted
>>> p1 = sample.Point()
>>> p1.x = 2.0
>>> p1.y = 3

第二个自定义涉及到对 typemaps.i 库的引入和 %apply 指令, 它会指示 Swig 参数签名 int *remainder 要被当做是输出值。 这个实际上是一个模式匹配规则。 在接下来的所有声明中,任何时候只要碰上 int *remainder ,他就会被作为输出。 这个自定义方法可以让 divide() 函数返回两个值。

>>> sample.divide(42,8)
[5, 2]

最后一个涉及到 %typemap 指令的自定义可能是这里展示的最高级的特性了。 一个 typemap 就是一个在输入中特定参数模式的规则。 在本节中,一个 typemap 被定义为匹配参数模式 (double *a, int n) . 在 typemap 内部是一个 C 代码片段,它告诉 Swig 怎样将一个 Python 对象转换为相应的 C 参数。 本节代码使用了 Python 的缓存协议去匹配任何看上去类似双精度数组的输入参数 (比如 NumPy 数组、array 模块创建的数组等),更多请参考 15.3 小节。

在 typemap 代码内部,$1 和 $2 这样的变量替换会获取 typemap 模式的 C 参数值 (比如 $1 映射为 double *a )。$input 指向一个作为输入的 PyObject * 参数, 而 $argnum 就代表参数的个数。

编写和理解 typemaps 是使用 Swig 最基本的前提。 不仅是说代码更神秘,而且你需要理解 Python C API 和 Swig 和它交互的方式。 Swig 文档有更多这方面的细节,可以参考下。

不过,如果你有大量的 C 代码需要被暴露为扩展模块。 Swig 是一个非常强大的工具。关键点在于 Swig 是一个处理 C 声明的编译器, 通过强大的模式匹配和自定义组件,可以让你更改声明指定和类型处理方式。 更多信息请去查阅 , 还有 。

Swig包装生成器
Swig网站
特定于Python的相关文档